|
深圳市首譽科技有限公司-什么是氮化鎵充電器? ![]()
氮化鎵,分子式GaN,英文名稱Gallium nitride,是氮和鎵的化合物,是一種直接能隙(direct bandgap)的半導體,自1990年起常用在發光二極管中。此化合物結構類似纖鋅礦,硬度很高。氮化鎵的能隙很寬,為3.4電子伏特,可以用在高功率、高速的光電元件中,例如氮化鎵可以用在紫光的激光二極管,可以在不使用非線性半導體泵浦固體激光器(Diode-pumped solid-state laser)的條件下,產生紫光(405nm)激光。
GaN材料的研究與應用是目前全球半導體研究的前沿和熱點,是研制微電子器件、光電子器件的新型半導體材料,并與SIC、金剛石等半導體材料一起,被譽為是繼第一代Ge、Si半導體材料、第二代GaAs、InP化合物半導體材料之后的第三代半導體材料。它具有寬的直接帶隙、強的原子鍵、高的熱導率、化學穩定性好(幾乎不被任何酸腐蝕)等性質和強的抗輻照能力,在光電子、高溫大功率器件和高頻微波器件應用方面有著廣闊的前景。 GaN材料系列具有低的熱產生率和高的擊穿電場,是研制高溫大功率電子器件和高頻微波器件的重要材料。目前,隨著 MBE技術在GaN材料應用中的進展和關鍵薄膜生長技術的突破,成功地生長出了GaN多種異質結構。用GaN材料制備出了金屬場效應晶體管(MESFET)、異質結場效應晶體管(HFET)、調制摻雜場效應晶體管(MODFET)等新型器件。調制摻雜的AlGaN/GaN結構具有高的電子遷移率(2000cm2/v·s)、高的飽和速度(1×107cm/s)、較低的介電常數,是制作微波器件的優先材料;GaN較寬的禁帶寬度(3.4eV) 及藍寶石等材料作襯底,散熱性能好,有利于器件在大功率條件下工作。
對于GaN材料,長期以來由于襯底單晶沒有解決,異質外延缺陷密度相當高,但是器件水平已可實用化。1994年日亞化學所制成1200mcd的 LED,1995年又制成Zcd藍光(450nmLED),綠光12cd(520nmLED);日本1998年制定一個采用寬禁帶氮化物材料開發LED的 7年規劃,其目標是到2005年研制密封在熒光管內、并能發出白色光的高能量紫外光LED,這種白色LED的功耗僅為白熾燈的1/8,是熒光燈的1/2, 其壽命是傳統熒光燈的50倍~100倍。這證明GaN材料的研制工作已取相當成功,并進入了實用化階段。InGaN系合金的生成,InGaN/AlGaN 雙質結LED,InGaN單量子阱LED,InGaN多量子阱LED等相繼開發成功。InGaNSQWLED6cd高亮度純綠茶色、2cd高亮度藍色 LED已制作出來,今后,與AlGaP、AlGaAs系紅色LED組合形成亮亮度全色顯示就可實現。這樣三原色混成的白色光光源也打開新的應用領域,以高可靠、長壽命LED為特征的時代就會到來。日光燈和電燈泡都將會被LED所替代。LED將成為主導產品,GaN晶體管也將隨材料生長和器件工藝的發展而迅猛發展,成為新一代高溫度頻大功率器件。
基本信息
中文名稱:氮化鎵
英文名稱:gallium(iii) nitride
英文別名:Gallium nitride; nitridogallium; gallium nitrogen(-3) anion
分子量:83.7297
熔點:1700℃
密度:6.1g/mL,25/4℃
計算化學數據 1、疏水參數計算參考值(XlogP):無
2、氫鍵供體數量:0
3、氫鍵受體數量:1
4、可旋轉化學鍵數量:0
5、互變異構體數量:無
6、拓撲分子極性表面積:23.8
7、重原子數量:2
8、表面電荷:0
9、復雜度:10
10、同位素原子數量:0
11、確定原子立構中心數量:0
12、不確定原子立構中心數量:0
13、確定化學鍵立構中心數量:0
14、不確定化學鍵立構中心數量:0
15、共價鍵單元數量:1
性質與穩定
如果遵照規格使用和儲存則不會分解。
避免接觸氧化物,熱,水分/潮濕。
GaN在1050℃開始分解:2GaN(s)=2Ga(g)+N2(g)。X射線衍射已經指出GaN晶體屬纖維鋅礦晶格類型的六方晶系。
在氮氣或氦氣中當溫度為1000℃時GaN會慢慢揮發,證明GaN在較高的溫度下是穩定的,在1130℃時它的蒸氣壓比從焓和熵計算得到的數值低,這是由于有多聚體分子(GaN)x的存在。
GaN不被冷水或熱水,稀的或濃的鹽酸、硝酸和硫酸,或是冷的40%HF所分解。在冷的濃堿中也是穩定的,但在加熱的情況下能溶于堿中。
優點與長處
①禁帶寬度大(3.4eV),熱導率高(1.3W/cm-K),則工作溫度高,擊穿電壓高,抗輻射能力強;
②導帶底在Γ點,而且與導帶的其他能谷之間能量差大,則不易產生谷間散射,從而能得到很高的強場漂移速度(電子漂移速度不易飽和);
③GaN易與AlN、InN等構成混晶,能制成各種異質結構,已經得到了低溫下遷移率達到105cm2/Vs的2-DEG(因為2-DEG面密度較高,有效地屏蔽了光學聲子散射、電離雜質散射和壓電散射等因素);
④晶格對稱性比較低(為六方纖鋅礦結構或四方亞穩的閃鋅礦結構),具有很強的壓電性(非中心對稱所致)和鐵電性(沿六方c軸自發極化):在異質結界面附近產生很強的壓電極化(極化電場達2MV/cm)和自發極化(極化電場達3MV/cm),感生出極高密度的界面電荷,強烈調制了異質結的能帶結構,加強了對2-DEG的二維空間限制,從而提高了2-DEG的面密度(在AlGaN/GaN異質結中可達到1013/cm2,這比AlGaAs/GaAs異質結中的高一個數量級),這對器件工作很有意義。
總之,從整體來看,GaN的優點彌補了其缺點,特別是通過異質結的作用,其有效輸運性能并不亞于GaAs,而制作微波功率器件的效果(微波輸出功率密度上)還往往要遠優于現有的一切半導體材料,深圳市首譽科技有限公司(www.66974.cc)。
|